

Date Planned ://	Daily Tutorial Sheet-8	Expected Duration : 45 Min		
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :		

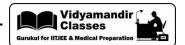
- 104. The correct statement about the synthesis of erythritol $(C(CH_2OH)_4)$ used in the preparation of PETN is :
 - (A) The synthesis requires four aldol condensations between methanol and ethanol
 - (B) The synthesis requires two aldol condensations and two Cannizzaro reactions
 - (C) The synthesis requires three aldol condensations and one Cannizzaro reaction
 - (D) Alpha hydrogens of ethanol and methanol are involved in this reaction
- **105.** The major product of the following reaction sequence is :

(2016)

(2016)

*106. Positive Tollen's test is observed for :

(2016)


(A)
$$H$$
 H (B) CHO (C) Ph Ph O

107. A compound of molecular formula $C_8H_8O_2$ reacts with acetophenone to form a single cross-aldol product in the presence of base. The same compound on reaction with conc. NaOH forms benzyl alcohol as one of the products. The structure of the compound is: (2017)

$$CH_3O$$
 (A) (B) (C) (D)

108. Which of the following compounds will show highest dipole moment?

(2017)

*109. Compounds P and R upon ozonolysis produce Q and S, respectively. The molecular formula of Q and S is C₈H₈O. Q undergoes Cannizzaro reaction but not haloform reaction, whereas S undergoes haloform reaction but not Cannizzaro reaction. (2017)

I. $P \xrightarrow{1. O_3/CH_2Cl_2} Q_{(C_8H_8O)}$

II. $R \xrightarrow{1. O_3/CH_2Cl_2} S_{(C_8H_8O)}$

The option(s) with suitable combination of P and R, respectively, is(are):

$$H_3C$$
 and CH_3 and H_3C CH_3 H_3C CH_3 CH_3

Matrix Matching Type

Answer Q.110-112 by appropriately matching the information given in the three columns of the following table.

Column 1, 2 and 3 contain starting materials, reaction condition, and type of reactions, respectively.

Column 1			Column 2	Column 3		
(I)	Toluene	(i)	NaOH / Br ₂	(P)	Condensation	
(II)	Acetophenone	(ii)	Br ₂ / hv	(Q)	Carboxylation	
(III)	Benzaldehyde	(iii)	$(CH_3CO)_2O$ / CH_3COOK	(R)	Substitution	
(IV)	Phenol	(iv)	${\it NaOH/CO}_2$	(S)	Haloform	

110. The only CORRECT combination in which the reaction proceeds through radical mechanism is: (2017)

(C)

(C)

(A) (IV) (i) (Q)

(III) (iii) (P)

(IV) (ii) (P)

(A)

(A)

(B) (I) (ii) (R)

(C) (III) (ii) (P)

(II) (iv) (R)

(III) (iv) (R)

(D) (II) (iii) (R)

(I) (i) (S)

(I) (iv) (Q)

(D)

(D)

111. The only CORRECT combination that gives two different carboxylic acids is :

(IV) (iii) (Q)

(II) (i) (S)

(2017)

(B)

(B)

(2017)

112. For the synthesis of benzoic acid, the only CORRECT combination is :

,__

*113. The reaction(s) leading to the formation of 1, 3, 5-trimethylbenzene is(are):

(2018)

(A)
$$O$$
 Conc. H_2SO_4 Δ

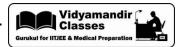
(C)
$$\begin{array}{c} 1) \text{ Br}_2, \text{ NaOH} \\ 2) \text{ H}_3\text{O}^+ \\ 3) \text{ sodalime, } \Delta \end{array} \qquad \text{(D)} \qquad \begin{array}{c} \text{CHO} \\ \text{Zn/Hg, HCI} \\ \text{OHC} \end{array}$$

PARAGRAPH FOR QUESTIONS 114 - 115

Treatment of benzene with CO/HCl in the presence of anhydrous $AlCl_3$ / CuCl followed by reaction with Ac_2O / NaOAc gives compound X as the major product. Compound X upon reaction with Br_2 / Na_2CO_3 , followed by heating 473 K with moist KOH furnishes Y as the major product. Reaction of X with H_2 / Pd-C, followed by H_3PO_4 treatment produce Z as the major product. (2018)

114. The compound Y is:

115. The compound Z is:


116. This desired product X can be prepared by reacting the major product of the reactions in List-I with one or more appropriate reagents in List-II. (Given, order of migratory aptitude : aryl > alkyl > hydrogen)
(2018)

(2018)

	List-I	List-II		
(P)	$\begin{array}{c} \text{Ph} \\ \text{Ph} \\ \text{Ph} \\ \text{OH} \\ \text{Me} \end{array} + \text{H}_2 \text{SO}_4$	1.	I ₂ , NaOH	
(Q)	$\begin{array}{c} Ph \\ H_2N \\ Ph \end{array} + H_{OH} + H_{NO_2}$	2.	[Ag(NH ₃) ₂]OH	
(R)	$\begin{array}{c} \text{Ph} \\ \text{Me} \end{array} + \text{H}_2\text{SO}_4$	3.	Fehling solution	
(S)	Br H + AgNO ₃ Me	4.	HCHO, NaOH	
		5.	NaOBr	

The correct option is:

	P	9	R	S		P	9	R	S
(A)	1	2, 3	1	2, 4	(B)	1	3, 4	4, 5	3
(C)	1, 5	3, 4	5	2, 4	(D)	1, 5	2, 3	1, 5	2, 3

List-I includes starting materials and reagents of selected chemical reactions. List-II gives structures of 117. compounds that may be formed as intermediate products and/or final products from the reactions of List-I. (2019)

Which of the following options has the correct combination considering List-I and List-II?

- (A)
- (II), (P), (S), (T) (B)
- (I), (S), (Q), (R) (C)
- (I), (Q), (T), (U) (D)
- (II), (P), (S), (U)
- 118. List-I includes starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I. (2019)

(III) Cl (ii) KCN (iii)
$$H_3O^+, \Delta$$
 (i) LiAl H_4 (ii) conc. H_2SO_4

(IV)
$$CO_2Me$$
 (i) LiAlH₄ (ii) conc. H₂SO₄

(T)
$$CO_2H$$
 CO_2H

Which of the following options has the correct combination considering List-I and List-II?

- (A) (IV), (Q), (U)
 - (Q), (U) **(B)**
- (III), (T), (U)
- (C) (IV), (Q), (R)
- **(D)** (III), (S), (R)
 - (111), (5), (14)

119. Choose the correct option(s) for the following reaction sequence

(2019)

CHO
(i)
$$Hg^{2+}$$
, dil. H_2SO_4
(ii) $AgNO_3$, NH_4OH
(iii) $Zn-Hg$, conc. HCl

Q
(i) $SOCl_2$
pyridine
(ii) $AlCl_3$

R

Zn-Hg
conc. HCl

S

Consider Q, R and S as major products

120. Schemes 1 and 2 describe the conversion of P to Q and R to S, respectively. Scheme 3 describes the synthesis of T from Q and S. The total number of Br atoms in a molecule of T is ______ (2019)

Scheme 1:

$$\begin{array}{c|c} NH_2 & \text{(i) Br}_2 \text{ (excess), H}_2O \\ & \text{(ii) NaNO}_2, HCl, 273 \text{ K} \\ & \text{(iii) CuCN/KCN} \\ \hline & \text{(iv) H}_3O^+, \Delta \\ & \text{(iv) SOCl}_2, \text{pyridine} \end{array} \qquad \begin{array}{c} Q \\ \text{(major)} \end{array}$$

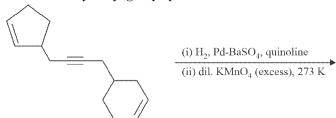
Scheme 2:

$$(i) Oleum
(ii) NaOH, \Delta
(iii) H+
(iv) Br2, CS2, 273 K (major)$$

Scheme 3:

$$S \xrightarrow{\text{(i) NaOH}} T$$
(major)

121. Choose the correct option(s) for the following reaction sequence


(2019)

$$\begin{array}{c} \text{CHO} & \text{(i) Hg}^{2+}, \text{ dil. H}_2\text{SO}_4 \\ & \text{(ii) AgNO}_3, \text{NH}_4\text{OH} \\ \hline & \text{(iii) Zn-Hg, conc. HCl} \end{array} \neq Q \begin{array}{c} \text{(i) SOCl}_2 \\ & \text{pyridine} \\ \hline & \text{(ii) AlCl}_3 \end{array} \Rightarrow R \begin{array}{c} \text{Zn-Hg} \\ & \text{conc. HCl} \end{array}$$

Consider Q, R and S as major products

122. Total number of hydroxyl groups present in a molecule of the major product P is ______ **(2019)**

